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A PROBABILITY MODEL FOR INFERRING
EVOLUTIONARY TREES"*

James S. Farris

Abstract

Farris, J. S. (Dept. of Ecology and Evolution, State Univ. of New York at Stony Brook,
Stony Brook, N.Y. 11790) 1973. A Probability Model for Inferring Evolutionary Trees.
Syst. Zool. 22:250-256.—Estimation of evolutionary trees should be treated as a problem
in statistical inference, but such treatment requires the explicit formulation of a stochastic
model of the evolutionary process. Because an evolutionary inference procedure is likely
to be put to such uses as deciding the issue of whether rates of evolution are homogeneous,
the stochastic model underlying the inference procedure should not assume homogeneity
over time of the evolutionary process, and in fact, should make only the weakest evolu-
tionary assumptions necessary. Such a model is constructed, and it is shown that most
parsimonious trees are maximum-likelihood estimated evolutionary trees under the stochastic
model. Similarity clustered phenograms appear not to be well justified as statistical estimates
of evolutionary trees, even when homogeneity of evolutionary rates is assumed. [Evolution;

trees; maximum-likelihood; phenograms.]

While it is generally agreed that the re-
construction of evolutionary trees should
ideally be regarded as a problem in statis-
tical inference, few approaches to evolu-
tionary taxonomy have taken into account
the full implications of that premise. A
statistical inference procedure can properly
exist only as a method derived under a
specified probability model and demon-
strably possessing one or more optimality
properties under that model. Stochastic
models of the evolutionary process have
seldom been discussed in the context of
evolutionary inference problems, and ex-
plicit consideration of the statistical op-
timality properties of eyolutionary inference
methods has consequently been neglected.
The purpose of the present paper is to
construct a simple probability model of
the evolutionary process and to discuss the
desirability of some inference methods
under that model.

SELECTION OF AN OPTIMALITY CRITERION

Because the problem under consideration
is that of inferring evolutionary trees, many

1 Preparation of this paper was partially sup-
ported by NSF Grant B036060.

2 Contribution No. 62 from the Department of
Ecology and Evolution, State University of New
York at Stony Brook.

familiar statistical optimality criteria must
be left unused. While such properties as
unbiasedness and minimum-variance are
well justified and easily applied in the case
of normally distributed, real valued, random
variables, it is not clear how they could be
applied to—or even defined for—estimated
trees. The only statistical optimality prin-
ciple which would seem readily applicable
to the case of estimated trees is that the
selected tree should be the most probable
tree on the basis of available data. For
some models, we may be able directly to
formulate a function P{E|D}, the condi-
tional probability of an evolutionary hy-
pothesis, E, given specified data, D. For
other models it may be more natural to
specify the function P{D|E}, the proba-
bility of data given a specified evolutionary
hypothesis, then to obtain P{E|D} through
the inversion formula ‘

P{D|E} P{E}

P(E|D} =——5 755

(1)

In either case E is selected to maximize
P{E|D} for a specified D. For this pur-
pose, it is necessary only to know the rank
ordering of P{E|D} as a function of E for
fixed D. This simplification is frequently
important, for example where P{E|D} is
obtained through the inversion formula (1),
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P{D}, being constant for fixed D, can be
ignored. In the same case P{E}, the prob-
ability of evolutionary hypothesis E not
conditional upon any data, may be treated
as if equal for all E. The evolutionary
hypothesis, E, that maximizes P{E[D} for
a specified D is called the maximum-
likelihood estimate of the true evolutionary
tree. A general discussion of maximum-
likelihood estimation is provided by Lind-
gren (1962), which will also serve as a
reference for other probability-theoretic re-
sults in this paper.

SELECTION OF A STOCHASTIC MODEL

Given that we select estimated evolution-
ary trees always according to the maximum-
likelihood criterion, the method for con-
structing an estimated evolutionary tree is
in principle well determined once a sto-
chastic model of the evolutionary process
has been selected. This model should be
chosen with some care because of the spec-
trum of uses to which a method for in-
ferring evolutionary trees is likely to be
put. For example, there has been some con-
troversy on the issue of whether rates of
evolution are homogeneous over time and
among phyletic lines, particularly in the
case of protein sequences. An attractive
way of collecting evidence relevant to this
controversy is to construct an evolutionary
tree and to inspect it for indications of
the truth or falsity of the hypothesis of
rate homogeneity. But if a tree-inference
procedure is to be used in this way, it is
plainly undesirable for the procedure to
impose an artificial homogeneity on the
estimated evolutionary rates. Hence the
stochastic evolutionary model should be
selected so that it does not assume the
evolutionary process to be homogeneous
over time.

The evolutionary inference model of
Cavalli-Sforza and Edwards (1967) will
provide an instructive example of an evo-
lutionary model that does.assume homo-
geneity over time. Here the data are taken
to consist of allelic frequencies at each of
several loci for several populations, and

evolutionary change in these frequencies
is taken to be due entirely to genetic drift.
The estimated tree is characterized by its
shape and the placement on its branches
of the data populations, together with the
estimated amount of evolution occurring
in each branch of the tree and the time (in
relative units) of each branching point of
the tree. Let t; denote the temporal length
of the ith branch of a tree and d; the
amount of evolution in the ith branch.
Cavalli-Sforza and Edwards derive a fre-
quency function f(di|t;) giving the density
of the event that d; units of divergence will
occur in a branch of temporal length t;
under the genetic drift model. The density
of an entire tree is then

Provided the tree connects all the data pop-
ulations in both time and gene-frequency
space, equation (2) gives the relative fre-
quencies of trees E for specified data, and
so is the continuous analog of P{E|D}.
Formulations such as that of Cavalli-
Sforza and Edwards are readily enough
constructed for a variety of stochastic evo-
lutionary models, and they have the appeal
of providing estimates of the times of di-
vergence of phyletic lines leading to modern
species. This type of approach, however,
suffers from two major drawbacks. Fre-
quency functions of the type f(di|t;) can
be formulated for simple models only under
the premise that the evolutionary process
is homogeneous over time, inducing, as
noted above, an undesirable restriction on
the applicability of a method. Also, even
in the case where a relatively simple, time-
wise homogeneous process is postulated,
frequency functions of the form of (2)
may be quite intractable. The maximum-
likelihood estimated tree under the pro-
cedure of Cavalli-Sforza and Edwards, for
example, must be identified by minimizing

?(di/ti + log t;) (3)

where summation extends over all the
branches in the estimated tree. While nat-
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urally it would be possible to construct a
function f(dy|t;) incorporating some specific
sort of heterogeneity of the stochastic
process over time, there seems to be little
biological motivation for choosing any par-
ticular such function, and every reason to
believe that any specific choice of such a
function would result in an inference pro-
cedure quite unsuited to the majority of
applications.

It seems desirable to avoid the assump-
tion of stochastic homogeneity of the evolu-
tionary process, and consequently to avoid
formulations of the sort used by Cavalli-
Sforza and Edwards, in which a distribu-
tion of amount of change as a function of
time must be specified. More generally, it
would seem that the safest course to follow
in constructing a stochastic model of the
evolutionary process for purposes of de-
ciding upon inference procedures is to keep
the evolutionary assumption made in the
model as simple and weak as possible so
as to obtain an inference procedure ap-
plicable to a variety of types of compara-
tive data.

AN EVOLUTIONARY MODEL

To construct a simple stochastic model
of evolution, I shall initially consider
discrete-valued characters. The generaliza-
tion of the model to continuous characters
will be treated below. Evolutionary modi-
fications in discrete characters will be taken
to occur in units of “changes.” I shall as-
sume that each species is characterized by
exactly one state for each character in the
study, and that the differences in number
of changes between any two states of any
character is known. Note that this last
admits of a variety of types of comparative
data. For example, if a character comprises
identity of the amino acid at a specified
site of a protein, we might define the num-
ber of changes between any two states, or
amino acids, to be unity, or alternatively,
as equal to the minimum mutation distance
between the amino acids in the sense of
Fitch and Margoliash (1967). If the states

of the character are coded integer values,
we could take the number of changes be-
tween two states to be equal to the absolute
value of the difference between their nu-
meric codes. In general, a character may be
characterized by a state by state matrix of
distances expressed in number of changes.
I shall assume evolutionary events occurring
at different times or in different parts of
the evolutionary tree to be probabilistically
independent and different characters to be
probabilistically independent with respect
to their evolutionary changes. I shall not
assume that characters are restricted to
evolve in only one direction.

Let the total temporal length of the
evolutionary tree be fixed, while unknown,
and to be equal to n in some time units.
Divide the branches of the evolutionary
tree each into several small time units of
length u so that the total number of time
units is

N=n/u. (4)

Since the characters are discrete it seems
natural to take a Poisson-type probability
model. Therefore, suppose that for u suf-
ficiently small, the probability that any
character changes more than once in any
time interval is negligible. Denote as pj;
the probability that the ith character
changes in the jth of N time intervals.
Define

$1= 31 P (5)
and
M; = max {py;}. (6)

J

Suppose that for sufficiently small u, s; is
independent of u for every character; that
is, s; tends to a well defined limit as u
tends to zero. Finally, assume that M,
tends to zero as u tends to zero and that
for any pair py, pxi, Pii/Pr tends to a finite
limit as u tends to zero.

Biologically, these restrictions on the be-
havior of py seem realistic in that even
a character that has high probability of
changing repeatedly during the evolution-
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ary process is unlikely to change during a
particular time unit, provided that the time
units are sufficiently small and numerous.
As each small time unit has its own prob-
ability, py, of a change’s occurring in
each character, the evolutionary process is
plainly not restricted to be homogeneous
over time. Since for sufficiently small u
the probability of more than one change
within a single time unit in any character
is negligible, the probability, py;, that the
ith character changes in the jth time unit
is also the local mean rate of evolution for
the ith character in the jth time unit. The
quantity s; represents the expected number
of changes in the ith character over the
entire evolutionary tree; the restriction that
s; tend to a well defined limit as u tends
to zero simply implies that this expectation
does not depend upon an arbitrary choice
of time intervals. The restriction that there
be a finite limit for every py/pu as v be-
comes small merely requires that the local
average rates of evolution of the characters
may vary over time and among characters
by any “reasonable” (that is, non-infinite)
amount.

Now define dj; to be a variable that takes
on value unity if the ith character changes
in the jth time unit, and is zero otherwise.
Then we can write the probability of a
particular sequence:of changes on an evo-
lutionary tree as

P{E|D}= I}III (pydyy + (1-py) (1-dy)), (7)

where we suppose that the sequence of

changes under consideration is so restricted

that the data species are contacted by the

branches of tree E in the character space

defined by the available data variables.
Now provided that

maxj {Perpy} < min {pwx(1-py)} (8)
g,h,1, Ww,X,¥,%

then P{E|D} is monotone decreasing on
L(ED) = 33 dy, (9)

where by the notation L(E|D) the restric-
tion of E to conform to D is explicitly

recognized. In the case that E does not
conform to D, formally define L(E|D) to
be unbounded and positive. L(E|D) is
monotonically related to P{E|D} under in-
equality (8), since (8) specifies that re-
placing any two changes by any single
change must increase the probability of the
sequence of changes. As u tends to zero,
condition (8) is automatically fulfilled, for
then 1 - py, tends to unity, since My tends
to zero as u tends to zero. Define

M* = max {M,};
m* = min {py;}. (10)
13
Relation (8) is satisfied provided
(M*/m*)M* < 1. (11)

This must hold, for M*/m* must be
bounded as the variation among the py is
bounded, and M* itself tends to zero as u
tends to zero, since it is the maximum of
quantities that individually tend to zero
for sufficiently small .

We will usually be content to infer just
the shape of an evolutionary tree, rather
than the complete information on sequences
of changes subsumed by an evolutionary
hypothesis as described above. We can do
this by selecting as our estimated tree
shape, the tree shape T having the maxi-
mum possible value of P{E|D}, for E any
evolutionary hypothesis having tree shape
T. Because P{E|D} is monotone decreasing
on L(ED) under the present stochastic
model, we may identify the optimum esti-
mated T by finding a tree shape T with a
minimum value of L(T|D):

L(T|D) = min {L(E[D)}, (12)
E€A(T)

where A(T) is the collection of all evolu-
tionary hypotheses, E, having tree shape T.
The problem of searching for the optimum
estimated tree shape T is now greatly sim-
plified, for L(T|D) is the “number of
steps” for tree T given OTU’s and charac-
ters D in the sense of Camin and Sokal
(1965). Algorithms for calculating I(T|D)
are already known: the method of Farris
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(1970a) is applicable to real-valued char-
acters, while the method of Fitch (1971)
can be used to determine L(T|D) for amino
acid sequences. Hence we may identify
the tree shape T with minimum value of
L(T|D) directly from the data, there being
no need to explicitly formulate any of the
complete evolutionary hypotheses E.

The procedure derived above permits
the construction of an estimated tree shape
T by establishing the shape of the evolu-
tionary free corresponding to the most
“probable evolutionary hypothesis E on the
basis of given data. It would be mathe-
matically more pleasing to select the esti-
- mated tree shape T directly by choosing
T to maximize

P{T|D}= f P{E|D}. (13)
A(T)

The evaluation of the integral of expression
(13), however, requires, as far as I have
been able to determine, the imposition of
additional assumptions upon the stochastic
evolutionary model. Hence in the interest
of retaining as much generality as possible
in the inference procedure, it seems pref-
erable to select as the best estimated T
the tree shape corresponding to the hy-
pothesis E of maximum probability given
the data, rather than to try to judge the
probability of T directly on the basis of
the data.

The extension of this model to the case
of continuous characters is readily enough
accomplished. If, as has recently been sug-
gested by Eldredge and Gould (1972), con-
tinuous-valued characters typically evolve
in short, rapid bursts of change separated
by periods of very little change, then the
evolution of a “continuous” character may
be reasonably approximated by a discrete
variable. In this case, we will require some
scaling factor to convert differences among
states of a continuous character into num-
bers of “changes.” If the average size of
a “change” in a continuous character is
proportional to the within-population vari-
ability of that character, then the desired
transformation can be accomplished by

normalizing each continuous character ac-
cording to its within-population variability.
If X denotes a continuous character with
average within-population standard devia-
tion o, the normalized equivalent of X
would be

X* = X/o. (14)

If each of several continuous variables has
about the same average probability of
changing during a small time interval,
transformation (14) is justified only if the
transformed variables show about the same
average rates of evolution. The theoretical
argument of Farris (1966) and the em-
pirical findings of Farris (1970) and of
Kluge and Kerfoot (1973) that rates of
evolution in continuous characters are well
correlated with the within-population stan-
dard deviations of those characters suggests
that the latter is true, and hence that trans-
formation (14) is an appropriate means of
treating continuous characters under the
present stochastic model.

EVALUATION OF TREE-CONSTRUCTING METHODS

The results developed above bear on the
desirability of two general types of existing
methods for inferring evolutionary trees:
most parsimonious trees and similarity
clustering.

Since L(T|D) is, as noted above, the
“number of steps” of a tree shape T in the
sense of Camin and Sokal (1965), it is the
criterion to be minimized both under the
parsimony criterion as originally suggested
by Camin and Sokal and the maximum-
likelihood approach suggested here. Under
the model constructed above, therefore,
most parsimonious trees are also maximum-
likelihood-estimated trees. While this re-
sult seems intuitively reasonable, there had
been some doubt of it in the past. It has
occasionally been commented that most
parsimonious trees are good estimates of
the true evolutionary tree only under the
assumption that evolution proceeds par-
simoniously: that only one change in a
character during the entire evolutionary
sequence is more likely to occur than any
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larger number of changes, or that cases of
parallelism are rare in nature (see, for
example, Jardine and Sibson, 1971).
terms of the model presented above this
“justification” corresponds to the restriction
si<1 for every character. No such re-
striction, however, is necessary to ]ustlfy
the choice of the tree shape T with mini-
mum value of L(T|D) under the develop-
ment above. Suppose, for example, that the
data consist of two-state variables, for each
of which s; =25, say. Then the expected
number of extra steps is 24 per character,
but the tree with minimum total length is
still the maximum-likelihood-estimated tree.
Hence criticisms of the parsimony criterion
of the sort described here would appear
largely injustified.

Phenetic similarity-clustering is usually
justified as a means of evolutionary in-
ference through the assumption of homoge-
neity of evolutionary rates. If all the
probabilities p;; are assumed to be equal,
then the general probability model de-
veloped above becomes a model postulat-
ing homogeneity of evolutionary rates over
time and among phyletic lines. The re-
mainder of the model is unchanged, so
that the tree shape T with minimum value
of L(T|D) is still the maximum-likelihood
estimate of the true evolutionary tree. Since
most parsimonious trees need not have the
same shape as trees produced by phenetic
similarity clustering for the same data, it
would seem that phenetic similarity clus-
tering is poorly justified as a way of in-
ferring evolutionary trees, even under the
assumption of stochastic homogeneity of
evolutionary rates. While this observation
appears frequently to have been over-
looked, it is not new: the Cavalli-Sforza
and Edwards model described previously
provides another example of a maximum-
likelihood inference procedure in which
the stochastic model assumes homogeneity
of evolutionary rates and for which the
solution trees need not have the same form
as similarity-clustered phenograms based
on the same data.

Colless (1970) and Goodman and Moore
(1971) have constructed justifications of
phenetic similarity clustering as a means
of evolutionary inference depending not
on homogeneity of evolutionary rates, but
on homogeneity of rates of net diver-
gence among species. The latter assump-
tion would seem open to criticism on bio-
logical grounds. While it is easy to imagine
mechanisms which could result in homoge-
neity in rates of evolutionary change, as
for example genetic drift, it is much more
difficult to construct models under which
the net rates of divergence among species
are homogeneous. If rates of evolution are
taken to be nonhomogeneous, then rates of
divergence can be made homogeneous only
by appropriate selection of a pattern of
convergence among species. This latter
would seem unrealistic, as it would require
“coordination” of the evolutionary activities
of separately evolving phyletic lines, which
might, after all, reside on different conti-
nents. Hence, we may realistically believe
in homogeneity of rates of net divergence
among OTU’s only in the case where we
believe rates of evolution also to be ho-
mogeneous. But if evolutionary rates are
assumed to be homogeneous, we have al-
ready seen that the maximum-likelihood
estimated evolutionary tree need not be
the same as the similarity-clustered pheno-
gram. Thus it would appear that in no
case can a similarity-clustered phenogram
be statistically justified as a means of in-
ferring evolutionary relationships.

Most parsimonious trees are justified as
maximum-likelihood estimates of the true
evolutionary tree under the rather weak
assumptions of the stochastic model de-
veloped above. Similarity-clustered pheno-
grams, on the other hand, do not appear
to correspond to maximum-likelihood esti-
mated trees under any stochastic model of
the evolutionary process. It would there-
fore appear that most parsimonious trees
are preferable to similarity-clustered phe-
nograms for purposes of evolutionary
inference.
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